

Inter-model differences in the representation of the AMOC forcing of the NAO

Rein Haarsma (1,2) Sybren Drijfhout (2)

(1)Barcelona Supercomputing Center (BSC), Barcelona, Spain(2)Royal Dutch Meteorological Institute (KNMI), De Bilt, The Netherlands

Thermohaline Circulation (THC)

Atlantic Meridional Overturning Circulation (AMOC)

RAPID array monitoring AMOC strength at 26N since 2004

MSLP correlation with Nov-Mar NAO index 1979-2019

North Atlantic Oscillation (NAO)

Dominant mode of variability over the North Atlantic

Observations based on ERA5 reanalysis

15 HighResMIP models

100-year control simulations

1950's conditions

RAPID-ERA5 2004-2022

ERA5 1941-2023

L_{eff} (km)	L_{nom} (km)	O_{res} (degrees)
\geq 625	250	1
364	100	1/4
185	50	1/4
${\leq}185$	50	1/12
571	100	1
182	25	$1/_{4}$
253	50	1
\geq 185	50	1/4
185	25	1/4
351	100	1
238	50	1/4
364	100	1
256	50	1/4
\geq 625	250	1
313	50	1/4
	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c } L_{eff} (\mathbf{km}) & L_{nom} (\mathbf{km}) \\ \hline \geq 625 & 250 \\ \hline 364 & 100 \\ 185 & 50 \\ \leq 185 & 50 \\ \hline 571 & 100 \\ 182 & 25 \\ 253 & 50 \\ \geq 185 & 50 \\ 185 & 25 \\ 351 & 100 \\ 238 & 50 \\ \hline 364 & 100 \\ 256 & 50 \\ \geq 625 & 250 \\ \hline 313 & 50 \\ \end{array}$

- Winter season (DJF)
- Nonlinear detrended
- AMOC index: strength at 26N in Sv
- Different lags using 5 year running means
 - Negative lag: atmosphere is before ocean
 - Positive lag: atmosphere is lagging ocean

NAO MSLP response lag correlated with AMOC

Large spread among PRIMAVERA models especially at positive lags Separation between models according to their response at lag +5

NAO MSLP response lag correlated with AMOC

RAPID – ERA5

Smith et al. 2020 "North Atlantic climate far more predictable than models imply"

Regression MSLP on AMOC

Neg. NAO models Model mean

Pos. NAO models Model mean

regression

RAPID-ERA5 2004-2022

Lag +5

Lag 0

regression psl NAO-Modelmean lag+0 rm5

regression MOC msl RAPID ERA5 lag+0 rm5

Lag -3

regression psl NAO-Modelmean lag-3 rm5

regression MOC msl RAPID ERA5 lag-3 rm5

At lag 0 the AMOC response is dominated by the Ekman transport

Polo et al. 2014. Ocean model forced with ERA-40 winds

regression tos NAO+Modelmean lag+5 rm5

SST averaged over SPG box regressed on AMOC

Neg. NAO models

Lag in years

Pos. NAO models

-0.25

0.50

-0.75

-1.00 -

-20

-15

-10

-5

RAPID-ERA5

Lag in years

Lag in years

Time Lags

10

15

20

Regression SST on AMOC

Neg. NAO models Regression turbulent heat flux on AMOC (positive upward)

Lag -3

12

Regression turb.

heatflux on AMOC

Regression SST on AMOC

Rapid – ERA5

Lag -3

ERA5 1981-2023 5 yr running mean

Regression SST SPG box on SST, THF and MSLP

How is the atmosphere forced by the lagged SST response?

AMOC forcing and evolution of SSTs

Pos. NAO models

Mixed Layer Depth

Neg. NAO models

Regression with AMOC at Lag -3

Bias

regression tos NAO-Modelmean lag-3 rm5

regression MOC sst RAPID ERA5 lag-3 rm5

regression tos NAO-Modelmean lag+0 rm5

Lag + 3

Regression

Pos. NAO

What determines the difference between the neg. NAO and pos. NAO models?

- Bias
- Resolution

Bias

Sea-ice conc.

SST

T2m

Neg. NAO models

Pos. NAO models larger bias than Neg. NAO models

Pos. NAO models

SPG bias \longleftrightarrow NAO response at lag +5

Neg. NAO models Other models

Kim et al. 2023

γ: sensitivity of deepwater formation tobuoyancy flux

 β : sensitivity of AMOC response to NAO forcing

weak bias

Neg. NAO models

Pos. NAO models

Regression on AMOC at lag -3

regression tas NAO-Modelmean lag-3 rm5

Z500

regression tas NAO+Modelmean lag-3 rm5

At lag-3 T2m response seems to affect MSLP response

> Cold – High Warm – Low mechanism

Impact of sea-ice response

- 0.6

0.0

-0.3

-0.6

Effective resolution atmosphere models

(Klaver et. al 2020)

${\rm High \ Ocean} \ (0.25^{\circ})$					Low Ocean (1°)						
$\label{eq:VHigh Res} {\bf V} \ {\bf High} \ {\bf Res} \ (\leq 185 \ {\bf km}) \ \ {\bf High} \ {\bf R}$			High Res	ligh Res (185-256 km)		Low Res (256-364 km)		V Low Res (\geq 364 km)			
model	group	SPG SST bias	model	group	SP SST bias	model	group	SPG SST bias	model	group	SPG SST bias
ECMWF HR	Neg. NAO	-1.3	ECMWF MR	Pos. NAO	-1.0	CNRM HR	Pos. NAO	-5.9	HadGEM LL	Neg. NAO	-3.3
HadGEM HH	Neg. NAO	+0.6	MPI XR	Pos. NAO	-3.2	HadGEM MM	NAO0	-0.3	CNRM LR	Neg. NAO	+1.2
HadGEM HM	Neg. NAO	+0.1	ECMWF LR	Pos. NAO	-5.9	MPI HR	NAO0	-2.2			
CMCC-VHR	Neg. NAO	+1.1	EC-Earth HR	Pos. NAO	-1.8		Pos. NAO	-2.4			

SPG SST bias is averaged over SPG box in °C

Neg. NAO response for very high and very low-resolution models

Very low-resolution models well-tuned?

DWF for a few models at lag -3

HadGEM HH

HadGEM HM

HadGEM MM

HadGEM LL

regres AMAX1 mlotst HadGEM LL lag-3 rm5 nonlin_detr

CNRM LR

EC-Earth HR

NAO – AMOC feedback

Scatter plot DWF lag -3 with NAO response at lag +5

NAO - AMOC feedback is non-linear

All AMOC

Neg. AMOC

Pos. AMOC

Time Lags

Conclusions

- Different behaviour of PRIMAVERA models with respect to AMOC-NAO interaction
- SST bias in the SPG appears to be the main cause for the different behaviour. Resolution is important to reduce the bias. Tuning can compensate errors.
- Models with small bias simulate a switch from positive to negative NAO at positive lags of the AMOC
- RAPID ERA5 and ERA5 support the forcing of a negative NAO by the AMOC at positive lags

Discussion

For reliable decadal predictions:

- Crucial to reduce the SST-bias in the SPG and the sea-ice bias in the GIN sea
- Use flux correction to reduce the bias?

EERIE funding

This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101081383

All UK Partners in EERIE are funded by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee (grant numbers 10057890, 10049639, 10040510, 10040984).

ETH Zürich's contribution to EERIE is funded by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract #22.00366.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

END